

Odyssey Research Programme School of Physical and Mathematical Sciences

Predicting Glass Transition Temperatures of Polymers

Goh Kai Leong Supervised by Dr Lu Yunpeng* and Asst Prof Xia Kelin

The objective is to develop a regression machine learning model that can accurately predict T_q .

Using chemistry-related software like GaussView, Gaussian and Avogadro to edit and optimize the molecular data ^[2]

Feature Selection

Evaluation	r ²	RMSE
Validation	0.813	24.5
Test	0.812	26.9
CV	0.712	32.6

Current Work

- Comprised 1200 data points
- Polymer data from Polyinfo •
- r² improved but RMSE got worse •

Evaluation	r ²	RMSE
Validation	0.881	33.2
Test	0.844	37.5
CV	0.841	38.1

Conclusion & Future Work

With the increase in number of data points:

• The r² improved while RMSE became worse

In the later stage of our research, we intend to try:

Bringing r² closer to 1

- Mordred library (2D + 3D molecular descriptors) ^[3]
- RDKit library (Extended connectivity fingerprints)^[4]
- Subsequently combine the features and remove redundant bits

dmlc XGBoost

Machine Learning Algorithm

RDKit

Extreme Gradient Boosting Regression^[5] An enhanced form of Gradient Boosting

Works by combining weaker decision trees to form a single stronger model

Algorithm evaluation

- Coefficient of determination (r²) Higher is better
- Root-mean-square error (RMSE) Lower is better
- Cross-validation (CV) To check for any overfitting

- Bringing RMSE lower
- Further increasing the number of data
- Consider deep learning

www.ntu.edu.sg

References

- Shrivastava, A. Introduction to Plastics Engineering. In Introduction to Plastics Engineering; William Andrew, **2018**; pp 1-16. https://doi.org/10.1016/B978-0-323-39500-7.00001-0
- https://gaussian.com/citation/ & https://avogadro.cc/cite/ 2.
- Landrum, G. An overview of the RDKit. <u>http://www.rdkit.org/docs/Overview.html</u> (accessed May 12, 2020) 3.
- Moriwaki, H.; Tian, Y.; Kawashita, N.; Takagi, T. Mordred: a molecular descriptor calculator. J. 4. Cheminformatics. 2018, 10, 4
- XGBoost 5. XGBoost Developers. Tutorials. Introduction Boosted to Trees. https://xgboost.readthedocs.io/en/latest/tutorials/model.html (accessed May 12, 2020)